Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
Authenticity assessment of (E)-cinnamic acid, vanillin, and benzoic acid from various origins (n = 26) was performed using gas chromatography-isotope ratio mass spectrometry coupled with combustion and pyrolysis mode (GC-C/P-IRMS). For that reason, the above three compounds (1–3) from synthetic, natural, and Sumatra benzoin balsam (laboratory prepared, adulterated, and commercial) were investigated.Theδ13CV-PDB and δ2HV-SMOW values for compounds 1–3 from synthetic samples (S1–S5) ranging from −26.9 to −31.1‰ and 42 to 83‰, respectively, were clearly different from those of authentic samples (N1–N4, L1–L9) varying from −29.8 to −41.6‰ and −19 to −156‰. In adulteration verification testing, for compounds 1 and 3, both δ13CV-PDB and δ2HV-SMOW data of A1 (5.0% added) and A2 (2.5% added) except A3 (0.5% added) fell into the synthetic region, whereas for compound 2, the δ2HV-SMOW data of adulterated samples (A1–A3) fell into the synthetic region, and even the lowest adulterated sample A3 is no exception. With this conclusion, some commercial Sumatra benzoin balsam samples were identified to be adulterated with synthetic 1 (C1, C3, and C5) and synthetic 2 (C3, C4, and C5) but not with synthetic 3. GC-C/P-IRMS allowed clear-cut differentiation of the synthetic and natural origin of 1, 2, and 3 and definite identification of whether a Sumatra benzoin balsam was adulterated or not....
The ability to remove carbon dioxide from gaseous mixtures is a necessary step toward the reduction of greenhouse gas emissions. As a contribution to this field of research, we performed a molecular dynamics study assessing the separation and adsorption properties of multi-layered graphtriyne membranes on gaseous mixtures of CO2, N2, and H2O. These mixtures closely resemble post-combustion gaseous products and are, therefore, suitable prototypes with which to model possible technological applications in the field of CO2 removal methodologies. The molecular dynamics simulations rely on a fairly accurate description of involved force fields, providing reliable predictions of selectivity and adsorption coefficients. The characterization of the interplay between molecules and membrane structure also permitted us to elucidate the adsorption and crossing processes at an atomistic level of detail. The work is intended as a continuation and a strong enhancement of the modeling research and characterization of such materials as molecular sieves for CO2 storage and removal....
Industrial symbiosis is one of the key approaches to meet sustainable and low carbon production targets. Thus, through circular approaches, it is possible to reduce the use of natural crude materials and make production processes waste-free in the metallurgical industry. The purpose of this study was to study the possibility of using various metallurgical waste and low-grade semi-finished products, which do not have a direct application area, in the production of heat-resistant carboncontaining refractory bricks through the combustion synthesis (CS) method. In the experiments, used metallurgical wastes were wet filter cake (FC), sludge (S), and refractory magnesite scrap (MS) while semi-products were rich and poor dust of chrome spinel (Cr-S). Simultaneously with the experiments, thermochemical simulation studies were carried out using the HSC Chemistry 6.12 to predict the thermodynamic properties of the reactions and possible reaction products. Thermal conductivity coefficients were determined in products in terms of thermal properties of composite samples, they were between 0.511 and 1.020 Wm/K. The phase compositions of the produced samples were determined via XRD technique. The TG-DTA technique was used to characterize thermal behavior of products. In addition, mechanical properties were determined by compression strength test. As a result of experiments, it was observed that Cr-S-rich-based samples showed a promising result in comparison to others: increasing amount of useful carbide phases were formed and demonstrated a high value of mechanical properties. Compression strength was increased from 2.7 MPa (sample №4) to 15.8 MPa (sample №1) with increasing chromite-containing phases in the green samples....
Coal spontaneous combustion is one of the most severe and constant hazards in the coal industry. Understanding the mechanisms is the basis for effective hazard control in the coal-producing process. This paper investigated two types of oxidized coal samples from the re-mining faces of an underground coal mine. Proximate analysis, elemental analysis, surface analysis, temperatureprogrammed experiments, and differential scanning calorimetry analysis were conducted to study the spontaneous combustion characteristics. Various reaction mechanism functions were adopted to calculate the kinetic parameters, and multiple linear regression was performed to simulate the reaction behavior. The results show that the thermal decomposition of the oxidized coal followed a two-stage reaction model. The first stage reaction occupied smaller apparent activation energy and promoted the second stage reaction, dominating the heat production. Therefore, significant prevention measures for coal spontaneous combustion should be conducted and emphasized appropriately in the first stage to break the continuous reaction. The findings of this study can serve as a reference for predicting and preventing spontaneous combustion of oxidated coal....
Coal fire disaster caused by the spontaneous combustion of coal has always been one of the serious problems that threaten the safety of coal mining. In our study, we first solved the dynamic parameters and mechanical functions of coal gangue using the Achar differential method and Coats-Redfern integral method. Then, based on the flow and heat transfer mechanism of hot rod vapor-liquid two-phase flow, combined with coal spontaneous ignition conditions, influencing factors, coal pile spontaneous combustion temperature field structure distribution, etc., the heat transfer process of the hot rod in the coal pile (coal gangue mountain) was analyzed. Results show the average activation energies of the second stage of different types of coal mine gangue. Upon comparing the characteristic parameters of coal gangue in different regions and ages, it is found that 8# coal gangue has better combustion and burn-out characteristics, and its comprehensive combustion characteristics are second only to those of the coal gangue in Datong and higher than those in Panzhihua, Pingdingshan, and Hancheng. The higher the content of volatile matter and fixed carbon in coal gangue, the lower the ash content, and the better the comprehensive combustion performance of the coal gangue. Under the condition of sufficient oxygen supply combustion, the larger the fuel ratio, the better the burnout performance of the coal gangue. The test of the influence of the hot rod on the temperature field distribution inside the coal pile shows that the maximum cooling rate of a single hot rod to the coal pile during the test period is 33.4°C, and the maximum cooling rate reaches 39.6%. The calculated heat dissipation of the 80 h hot rod is 1.0865, 2.1680, and 3.3649 MJ, respectively....
Loading....